Global existence for solutions of □u = A¦u¦p

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LOCAL BEHAVIOR AND GLOBAL EXISTENCE OF POSITIVE SOLUTIONS OF au − u u COMPORTEMENT LOCAL ET EXISTENCE GLOBALE DES SOLUTIONS POSITIVES DE au − u u

– We study the behavior near the origin of C2 positive solutions u(x) of au − u u (∗) in a punctured neighborhood of the origin in R (n > 2) where the constants λ and a satisfy n n−2 < λ< n+2 n−2 and 0 < a < 1. We also study the existence of C 2 positive solutions of (∗) in R. In both cases we show that changing a from one value in the open interval (0,1) to another value in (0,1) can have a dr...

متن کامل

Existence of multiple solutions for Sturm-Liouville boundary value problems

In this paper, based on variational methods and critical point theory, we guarantee the existence of infinitely many classical solutions for a two-point boundary value problem with fourth-order Sturm-Liouville equation; Some recent results are improved and by presenting one example, we ensure the applicability of our results.

متن کامل

Global Existence of Weak Solutions for the Burgers-Hilbert Equation

This paper establishes the global existence of weak solutions to the Burgers-Hilbert equation, for general initial data in L(IR). For positive times, the solution lies in L2∩L∞. A partial uniqueness result is proved for spatially periodic solutions, as long as the total variation remains locally bounded.

متن کامل

Global Existence of Solutions of an Activator-inhibitor System

We consider the generalized Gierer-Meinhardt system ><>: ∂uj ∂t = dj4uj − ajuj + gj (x, u) in Ω× [0, T ) , ∂uj ∂ν = 0 on ∂Ω× [0, T ) , uj (x, 0) = φj (x) in Ω where Ω is a smooth bounded domain in Rn with ν its unit outer normal, j = 1, 2, u = (u1, u2) and <: g1 (x, u) = ρ1 (x, u) u p 1 u q 2 + σ1 (x) , g2 (x, u) = ρ2 (x, u) u1 u2 + σ2 (x) . Here dj , aj are positive constants, ρ1 ≥ 0, ρ2 > 0, ...

متن کامل

Global Existence of Classical Solutions to a Cancer Invasion Model

This paper deals with a chemotaxis-haptotaxis model of cancer invasion of tissue. The model consists of three reactiondiffusion-taxis partial differential equations describing interactions between cancer cells, matrix degrading enzymes, and the host tissue. The equation for cell density includes two bounded nonlinear density-dependent chemotactic and haptotactic sensitivity functions. In the ab...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 1989

ISSN: 0022-0396

DOI: 10.1016/0022-0396(89)90169-1